User manual

LP11 924 Series - Uninterruptible Power Supply
6 & 10 kVA

Preface
We thank you for selecting a General Electric Digital Energy LP11 924 Series Uninterruptible Power Supply (UPS) and recommend that you read these instructions carefully before installation and start-up of the UPS.

Please keep this manual in a safe place for future reference and carefully read the important safety instructions in chapter 1 before installation of this device.

Model: LP11 924
Issued by: Product Document Department – Riazzino - CH
Date of issue: 11.11.2010
File name: OPM_LPU_11X_6K0_10K_1US_V010
Revision: 1.0
Identification No.:

© General Electric Consumer & Industrial SA.
All rights reserved; reproduction without permission prohibited. The content of this manual may be subject to change without prior notice; no liability can be accepted for any error or omission. The illustrations and plans describing the equipment are intended as general reference only and are not necessarily complete in every detail.
1 - IMPORTANT SAFETY INSTRUCTIONS

1.1 - SAVE THESE INSTRUCTIONS

This manual contains important instructions that should be followed during installation and maintenance of the UPS and batteries. It also gives all necessary information about the correct use of the UPS. Before attempting to install and start up the UPS, carefully read this manual. Keep this manual next to the UPS for future references.

Full understanding of and compliance with the safety instructions and warnings contained in this manual are the ONLY CONDITIONS to avoid any dangerous situation during installation, operation and maintenance work, and to preserve the maximum reliability of the UPS system.

GE refuses any responsibility in case of non-observance, unauthorized alterations or improper use of the delivered UPS.

While every care has been taken to ensure the completeness and accuracy of this manual, GE accepts no responsibility or liability for any loss or damage resulting from the use of the information contained in this document.

This document shall not be copied nor reproduced without the permission of GE.

Due to technical improvements, some of the information contained in this manual may be changed without notice.

1.2 - SAFETY WARNINGS AND SYMBOLS

Safety warnings

The text of this manual contains warnings to avoid risk to persons and to avoid damages to the UPS system and the supplied critical loads. Do not proceed beyond these warnings if you do not fully understand and/or are not able to meet the mentioned conditions. The non-observance of the warnings reminding hazardous situations could result in human injury and equipment damage.

Please pay attention to the meaning of the following warnings and symbols.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
</tr>
<tr>
<td>Refers to procedures or operations which, when not correctly performed, could cause personal injury or serious damage to the system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
</tr>
<tr>
<td>Warns the user about important operations or procedures described in this manual.</td>
</tr>
</tbody>
</table>

Safety Symbols

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
</tr>
<tr>
<td>The product may be in danger: when procedures or operations are not correctly performed, damage to the product may be the result.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER OF PARTS ELECTRICALLY LIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER OF PARTS ELECTRICALLY LIVE</td>
</tr>
<tr>
<td>Related to all situations with potentially hazardous voltage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER OF CRUSHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER OF CRUSHING</td>
</tr>
<tr>
<td>Used when moving the equipment due to the heavy weight.</td>
</tr>
</tbody>
</table>
1.3 - GENERAL

DANGER!
RISK OF ELECTRIC SHOCK.
Some of the parts of the UPS are necessarily under a hazardous voltage
Do not remove the cover; there are no user serviceable parts inside.
There may be danger, loss of life or personal injury if warnings are not strictly observed.

CAUTION
There may be damage to the equipment if procedures and practices are not strictly observed and followed.

NOTE
Do not attempt to service the UPS unless you have had proper training. Refer all maintenance and servicing to properly qualified, skilled and competent service personnel.

Qualified, skilled personnel are persons who (because of their training, experience, and position as well as their knowledge of appropriate standards, regulations, health and safety requirements and working conditions) are authorised to be responsible for the safety of the equipment, at all times whilst carrying out their normal duties and are therefore aware of, and can report, possible hazards (observe IEC 364, DIN VDE 0105 and national wiring regulations and accident prevention rules).

1.4 - INTENDED USE

LP11 924 Series UPS are designed to power up emergency lighting equipment and protect form all forms of power interference, including complete power failure.

CAUTION
DO NOT plug household appliances such as electric heaters, toasters or vacuum cleaners into the UPS.

The technical data as well as information concerning connecting requirements can be found on the rating label and in this document and shall be strictly observed.
1.5 - TRANSPORT, STORAGE

- Move the UPS in an upright position and in its original package to the final destination room.
- To lift the UPS, use a forklift or lifting belts with spreader bars.
- Check for sufficient floor and elevator loading capacity.
- Immediately after unpacking carefully check the integrity of the UPS equipment. In case you note recognizable damage, do not connect any voltage to the UPS, do not put the UPS into operation, but contact the nearest Service Centre.
- Store the UPS with its batteries fully charged in a dry location, storage temperature must be within -20 and +45°C (-4°F and 113°F).
- If the unit is stored for an extended period of time, the batteries must be recharged periodically. Connect the unit to the utility and switch it on:
 - if the storage temperature is within -20 and +30°C (-4°F and 86°F), recharge the batteries every 6 months, for 24 hours,
 - if the storage temperature is within -20 and +45°C (-4°F and 113°F), recharge the batteries every 4 months, for 24 hours.

1.6 - INSTALLATION

- When installing the UPS strictly observe all information on technical data and operating conditions. Comply with all warnings, and strictly follow the procedures and practices as described in this manual.
- This UPS is intended to be used in a controlled indoor environment and free of conductive contaminants and protected against animal intrusion.
- Check for sufficient floor loading capacity.
- Avoid placing the unit in direct sunlight or near heat sources.
- It is important that the unit has adequate ventilation. Maintain air movement around and through the unit. Do not block the air vents.
- The unit must be placed in a sufficiently ventilated area; the ambient temperature for UPS should be in the range of 0 to +40°C (32°F to 104°F). For battery the temperature range should be 20 to 30°C (68°F to 86°F). The battery backup time will not be optimum outside this temperature range.
- Do not install the UPS in an excessively humid environment or near water (95% no condensing).
- Avoid spilling liquids or dropping any foreign object into the UPS.
- Do not touch electronic components. They may be electrostatic sensitive and are for that reason easily damaged due to improper handling.
- To avoid potential health risks, electrical components should not be mechanically damaged or destroyed.

NOTE
Refer to table 7 for minimum clearance around the UPS for proper ventilation.
1.7 - ELECTRICAL CONNECTION

- All electrical connections are to be realized by qualified skilled personnel only.
- In this manual “Earth” is represented with two different symbols:
 - 🌧️ = Field wiring equipment grounding terminal,
 - ⚤ = Grounding terminals.
- The UPS should only be powered from a single phase, three wire AC source equipped with an earth connection.
- Use insulated copper input and output wiring, rated 90°C (194°F) wire size based on the capacities given in Tables 310-16 of the Nation Electrical code, ANSI/NFPA 70-2008. Specified in table 2 and table 3.
- When working on live Uninterruptible Power Supplies, be sure to comply with the applicable national accident prevention rules.

1.8 - OPERATION

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not touch output terminals.</td>
</tr>
</tbody>
</table>

The UPS is connected to batteries. The output terminals may be electrically live, even when the UPS is disconnected from the utility supply. Dangerous voltages may be present during battery operation.

1.9 - MAINTENANCE AND SERVICING

- All maintenance and servicing is to be carried out by qualified skilled personnel only.
- Servicing of batteries should be performed or supervised by personnel knowledgeable of batteries and the required precautions. Keep unauthorized personnel away from batteries.
- A battery can present a risk of electrical shock and high short circuit current.
- Never dispose of batteries in a fire: they may explode.
- Do not open or mutilate batteries: their contents may be extremely toxic. If exposed to electrolyte, wash immediately with plenty of water.
- The batteries must be disconnected during maintenance or service work.
- When replacing the batteries, use only the same type and size battery.
- The following precautions should be observed when working on batteries:
 - Remove watches, rings or other metal objects.
 - Use tools with insulated handles.
 - Wear rubber gloves and boots.
 - Do not lay tools or metal parts on top of batteries.
 - Disconnect charging source prior to connecting or disconnect battery terminals.
 - Determine if the battery is inadvertently grounded. If inadvertently grounded, remove source of ground. Contact with any part of a grounded battery can result in electrical shock. The likelihood of such shock will be reduced if such grounds are removed during installation and maintenance.

The batteries contain lead, which is a harmful substance for the environment. Proper disposal or recycling of the batteries is required. Refer to your local codes for disposal requirements.
1.10 - FCC COMPLIANCE STATEMENT

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Modifications not expressly approved by the manufacturer could void the user’s authority to operate the equipment under FCC rules.

1.11 - FIRE REGULATIONS

WARNING
Should a fire break out inside the system, a fire extinguisher with CO2 or halogen must be used. Do not inhale vapors.
2 - INTRODUCTION

2.1 - DESCRIPTION

More than ever before, today’s advanced electronic equipment, with complex integrated circuits and other sensitive electronics, needs a stable and continuous AC power supply to operate correctly. While the power coming from the wall outlet is often unreliable, a GE Digital Energy LP11 924 Series UPS provides the security of completely uninterrupted power.

A compact, truly on-line system, the LP11 924 UPS protects your equipment from all forms of power interference, including complete power failure. A simple and elegant circuit design, together with extensive protection against abnormal operating conditions (e.g. overload, short circuit, overheating), makes the UPS exceptionally reliable.

The UPS offers complete galvanic isolation of input and output, also when operating in bypass mode. As a result, input and output voltages do not necessarily have to be equal, making the UPS suitable for almost every situation.

All units are standard equipped with a backfeed protection relay.

![LP11 924 UPS - Front View](image)

2.2 - WARRANTY

NOTE
Refer to GE warranty rider at:
3 – FUNCTIONAL EXPLANATION

3.1 - THE PRINCIPLES OF OPERATION

The UPS stores electric energy in batteries. This allows the UPS to supply output power even when the incoming utility power is cut off completely. Energy is stored as Direct Current (DC), while input and output energy must be Alternating Current (AC). Therefore the UPS contains an input converter (AC to DC) and an output converter (DC to AC). (fig. 2)

3.2 - NORMAL CONDITIONS

Under normal conditions, energy from the utility is channeled through the input converter, which supplies the output converter and the battery charger. The batteries are kept in a fully charged state, and the output converter synthesizes a completely new AC output sine wave to supply the load (electrical equipment).

3.3 - UTILITY FAILURE

In the event of a utility power failure (i.e. absent or outside tolerance) the system uses the energy reserve stored in the battery to continue to produce AC power, ensuring unbroken output (fig. 3). No interruption or alteration will ever be noticed in the output power.

In the event of an extended utility failure (greater than 90 minutes), the output converter will stop when the battery has been discharged. At this point, the UPS is no longer able to power the connected equipment.

When the utility is re-established within tolerance, the output converter will be supplied again by the input converter and the batteries will be recharged, making them ready to support future power failures.

Figure 2: Block diagram of the LP11 924 UPS, utility present

Figure 3: Block diagram of the LP11 924 UPS, utility failure
3.4 - AUTOMATIC BYPASS SWITCH

If the output converter is unable to deliver the demanded output power because of overload or over temperature, the automatic bypass switch will automatically transfer the load to the utility. When the situation is corrected the UPS will switch back to normal operation, i.e. the load is transferred back to the output converter. Though the automatic bypass switch is shown as a simple mechanical switch in figures 2-5, the transfers are done electronically, without any interruption of the power supplied to the load.

In case of a severe overload or short-circuit the magnetic bypass circuit breaker (rear panel) may trip in order to protect the UPS. If the current is insufficiently high to trip the breaker, the UPS will be switched off by the software in order to protect the UPS and connected equipment.

3.5 - MANUAL BYPASS SWITCH (SERVICE SWITCH)

The system can be bypassed manually using the manual bypass switch located at the rear panel. It is a two-position switch: the normal position is ‘1’: as in figures 2-4. Position ‘2’ is the service position: the load is directly connected to the utility input. This way maintenance of the UPS is possible without interruption of the power supplied to the load.

Refer service to qualified personnel only. See section 1.3 for further details.

The RFI filters and output transformer are always active.
4 – INSTALLATION

4.1 - TRANSPORT
Move the UPS and battery cabinet in its original package to the final destination room using a pallet truck or forklift.

CAUTION

During transport, pay attention to:

CAUTION
Check for sufficient floor and elevation loading capacity.
Transport the UPS only in upright position.
Do not stack other package on top

4.2 - UNPACKING

UPS: Cut the two wrapping bands, and remove the shipping box. Loosen the four bolts with which the UPS is fixed to the pallet. Remove the UPS from the pallet.

Battery cabinet: Open the wooden packing around the battery cabinet and remove the shipping box. Loosen the bolts with which the battery cabinet is fixed to the pallet. Remove the battery cabinet from the pallet.

WARNING!
Pay attention to the **HEAVY WEIGHT** of the UPS and battery cabinet while unloading from the pallet! Never try to lift them by yourself!

Immediately after unpacking carefully check the integrity of the UPS and battery cabinet. In case you note recognizable damage,

- notify the carrier and place of purchase
- contact the nearest GE Service Center.

WARNING! In case of recognizable damage:
DO NOT connect any voltage to the unit
DO NOT put the unit into operation

The UPS is equipped with castors, which allow easy displacement of the unit. Please take appropriate measures to avoid damage on vulnerable floors.

Recycle the packing material in compliance with all applicable regulations.

4.3 - PACKAGE CONTENTS

The standard package includes:

- UPS
- CD-ROM,
- RS232 cable,
- Insertion Bridge for connecting I/O terminal blocks
- Safety guide and
- This manual.

If the UPS is equipped with an RPA plug-in card (Redundant Parallel Architecture, right option slot at the rear of the unit) the shipping box also contains:

- A yellow network cable and
- One bus terminator.
4.4 - LOCATION

- This UPS and Battery Cabinet are intended to be used in a controlled indoor environment and free of conductive contaminants and protected against animal intrusion.
- Check for sufficient floor loading capacity.
- Avoid placing the unit in direct sunlight or near heat sources.
- It is important that the unit has adequate ventilation. Maintain air movement around and through the unit. Do not block the air vents.
- The unit must be placed in a sufficiently ventilated area; the ambient temperature for UPS should be in the range of 0 to +40°C (32°F to 104°F). For battery the temperature range should be 20 to 30°C (68°F to 86°F). The battery backup time will not be optimum outside this temperature range.
- Do not install the UPS in an excessively humid environment or near water.
- Avoid spilling liquids or dropping any foreign object into the UPS.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to table 7 for minimum clearance around the UPS for proper ventilation.</td>
</tr>
</tbody>
</table>

4.5 – INSTALLATION

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The UPS may only be installed by qualified and skilled personnel. Refer to section 1.3 for further details.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make sure that condensation does not occur as a result of a relatively low temperature of the unit. Especially if transport took place at sub-zero temperatures, allow the unit to warm up before installation and starting up.</td>
</tr>
</tbody>
</table>

- When installing the UPS strictly observe all information on technical data and operating conditions. Comply with all warnings, and strictly follow the procedures and practices as described in this manual.
- Do not touch electronic components. They may be electrostatic sensitive and are for that reason easily damaged due to improper handling.
- To avoid potential health risks, electrical components should not be mechanically damaged or destroyed.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before making any connection and switching on the LP11 924 UPS, check the following conditions.</td>
</tr>
</tbody>
</table>

- The voltage and frequency of your utility supply is 120/208/240/277 Vac and 50 or 60 Hz.
- Make sure that the UPS is wired for the present utility voltage. This is indicated on the packaging of the UPS, as well as at the I/O terminals (11 in Fig.19).
- Make sure that the total power requirement of the equipment to be protected does not exceed the rated output power of the UPS (output power for your unit is indicated on the rating label on the rear panel).
- When using the 120V split phase outputs make sure that the load per 120V output does not exceed half the rating.
• Overcurrent protection for the AC circuit is to be provided by others.

NOTE
To reduce the risk of fire, only connect to a circuit input/output provided with branch circuit overcurrent protection in accordance with the National Electrical Code, ANSI / NFPA 70, as indicated below:

<table>
<thead>
<tr>
<th>UPS model</th>
<th>Input overcurrent protection (Amps)</th>
<th>Output overcurrent protection (Max. Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage 120V 208V 240V 277V</td>
<td>120V [1 X] 208V 240V 277V</td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>40 35</td>
<td>50 25 30 25 25</td>
</tr>
<tr>
<td>LP 6-11U924 /120V</td>
<td>70</td>
<td>50 25 30 25 25</td>
</tr>
<tr>
<td>LP 6-11U924/277V</td>
<td>30</td>
<td>50 25 30 25 20</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>70 60</td>
<td>80 40 50 40 35</td>
</tr>
<tr>
<td>LP 10-11U924 /120V</td>
<td>120</td>
<td>80 40 50 40 35</td>
</tr>
<tr>
<td>LP 10-11U924/277V</td>
<td>50</td>
<td>80 40 50 40 35</td>
</tr>
</tbody>
</table>

Table 1. External input fuse value

INPUT RATINGS:

<table>
<thead>
<tr>
<th>UPS model</th>
<th>Vac</th>
<th>A</th>
<th>W</th>
<th>Hz</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP 6-11U924 /120V</td>
<td>120</td>
<td>57</td>
<td>6600</td>
<td>45-65</td>
<td>1.0</td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>208</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>240</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP 6-11U924/277V</td>
<td>277</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP 10-11U924/120V</td>
<td>120</td>
<td>89</td>
<td>10600</td>
<td>45-65</td>
<td>1.0</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>208</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>240</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP 10-11U924/277V</td>
<td>277</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1a. Input ratings

• The UPS must be grounded when in use: Connect the UPS to a single phase, three wire AC source equipped with an earth connection.

• Use insulated copper input and output wiring, rated 90°C derated to 40°C, wire size based on the ampacities given in Tables 310-16 of the National Electrical code, ANSI/NFPA 70-2008.

This wiring shall have the following minimum sizes:

INPUT WIRING:

<table>
<thead>
<tr>
<th>UPS rating</th>
<th>Utility voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120V</td>
</tr>
<tr>
<td>6kVA</td>
<td>4 AWG</td>
</tr>
<tr>
<td>10kVA</td>
<td>3 AWG</td>
</tr>
</tbody>
</table>

Table 2. Input wiring
OUTPUT WIRING:

<table>
<thead>
<tr>
<th>UPS rating</th>
<th>Output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120V</td>
</tr>
<tr>
<td>6 kVA</td>
<td>8 AWG</td>
</tr>
<tr>
<td>10 kVA</td>
<td>4 AWG</td>
</tr>
</tbody>
</table>

Table 3. Output wiring

TIGHTENING TORQUE FORCE:

<table>
<thead>
<tr>
<th>UPS model</th>
<th>Tightening torque force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP 6-11U924</td>
<td>18-20 Lbs/inch</td>
</tr>
<tr>
<td>LP 6-11U924 /120V</td>
<td>18-20 Lbs/inch</td>
</tr>
<tr>
<td>LP 6-11U924/277V</td>
<td>22 Lbs/inch</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>22 Lbs/inch</td>
</tr>
<tr>
<td>LP 10-11U924 /120V</td>
<td>18-20 Lbs/inch</td>
</tr>
<tr>
<td>LP 10-11U924/277V</td>
<td>28 Lbs/inch</td>
</tr>
</tbody>
</table>

Table 4. Tightening torque force

4.5.1 - INSTALLATION PROCEDURES

The LP11 924 UPS is capable of taking four input voltage (120V, 208V, 240V and 277V). The required input voltage should be mentioned at the time of ordering. According to the order the unit will be equipped with right input voltage. For any input voltage the UPS can be configured to give any one of the output voltages (120V, 208V, 220V, 230V, 240V, 277V). Before starting the installation UPS must be fixed to the floor as shown in Fig.6a. Mount the levelers in position A to fix the UPS to the floor, position B to lift the castors from the floor.

Figure 6a. UPS rear view - Mounting positions for levelers
4.5.1.1 - INSTALLATION PROCEDURE: INPUT VOLTAGE 120VAC OR 277VAC, OUTPUT VOLTAGE 120/208/220/230/240/277VAC.

If the input voltage is 120V/277V, then the input cables are connected to the input terminals of bottom transformer cabinet (11b in Fig.20). For external battery pack installation please proceed with section 4.5.5. If 2 parallel operating units will be installed, please proceed with section 4.5.6.

1. Mount the levelers as shown in Fig.6a.
2. Loosen the screws and remove the metal access cover (20 in Fig.20) to get access to the breakers.
3. Loosen the screws and remove the conduit boxes (17 in Fig.20) and the cover plate (11 in Fig.19).
4. Make sure that all circuit breakers (7,8,9 in Fig.19) are in ‘off’ position (down). Please refer to fig. 7, step 4.
5. Input/output connection:
 - Lead the input/output cables through the cable inlet. If the cables come from below (recommended for 10kVA models), you can rotate the cable inlet 90 degrees. Connect the input wires to the input terminals (11b in Fig.20). Connect the output wires to the output terminals (11a in Fig.19). Please refer to section 4.5.2.1 (input) and 4.5.3 (output) for detailed information.
6. Re-install the cover plate (11 in Fig.19), conduit boxes (17 in Fig.20) and access cover (20 in Fig.20).
7. An emergency shutdown switch can be connected to connector J3 on the RS232/Contact Interface Card, between pins 3 and 4. See section 6.2 for more information.
8. For advanced communication possibilities, the RS232/contact interface port (12a) can be connected to a computer system. See section 6.1 for more information.
9. The middle ‘option slot’ (13 in Fig.19) allows easy installation of plug-in cards: SNMP Card or Relay Card. See sections 6.3 and 6.4 for more information.
10. The right ‘option slot’ (14 in Fig.19) allows easy installation of the RPA-card (Redundant Parallel Architecture). If the card is already mounted, and if the unit is used as stand-alone, a bus terminator (delivered with the unit) has to be placed in one of the two bus connectors on the card. If the unit will be part of a parallel system, see sections 4.5.6 and 7.3 for more information.
11. Connect the utility power to the UPS.
12. If hardware modifications were necessary in step 5 because the output voltage is different from the default (277Vac), software modifications should be performed as well. Proceed with 4.5.4.
13. For a quick start proceed with section 5.2 ‘Start-up’.
4.5.1.2 - INSTALLATION PROCEDURE: INPUT VOLTAGE 208-240VAC, OUTPUT VOLTAGE 120/208/220/230/240/277VAC.

If the input voltage is 208/240V, then the input cables are connected to UPS input terminals 6,7,8 (11b in Fig.19). Hence the bottom transformer cabinet is not required.

For external battery pack installation, please proceed with section 4.5.5.

If 2 parallel operating units will be installed, please proceed with section 1.

Mount the levelers: position A to fix the UPS to the floor, position B to lift the castors from the floor.

2. Loosen the screws and remove the metal access cover (20 in Fig.20) to get access to the breakers.

3. Loosen the screws and remove the conduit box (17 in Fig.19) and the metal cover plate (11 in Fig.19).

4. Make sure that all circuit breakers (7,8,9 in Fig.19) are in ‘off’ position (down).

5. Input/output connection:
 Lead the input/output cables through the cable inlet. If the cables come from below (Recommended for 10kVA model), you can rotate the cable inlet 90 degrees. Connect the input/output wires to the I/O terminals (11a and 11b in Fig.19). Please refer to section 4.5.2.2 (input) and 4.5.3 (output) for detailed information.

6. Re-install the metal cover plate (11 in Fig.19), conduit box (17 in Fig.19) and access cover (20 in Fig.20).

7. An emergency shutdown switch can be connected to connector J3 on the RS232/Contact Interface Card, between pins 3 and 4. See section 6.2 for more information.

8. For advanced communication possibilities, the RS232/contact interface port (12a in Fig.19) can be connected to a computer system. See section 6.1 for more information.

9. The middle ‘option slot’ (13 in Fig.19) allows easy installation of plug-in cards: SNMP Card or Relay Card. See sections 6.3 and 6.4 for more information.

10. The right ‘option slot’ (14 in Fig.19) allows easy installation of the RPA-card (Redundant Parallel Architecture). If the card is already mounted, and if the unit is used as stand-alone, a bus terminator (delivered with the unit) has to be placed in one of the two bus connectors on the card. If the unit will be part of a parallel system, see sections 4.5.6 and 7.3 for more information.

11. Connect the utility power to the UPS.

12. If hardware modifications were necessary in step 5 because the I/O voltages are different from the default (277Vac), software modifications should be performed as well. Proceed with 4.5.4.

13. For a quick start proceed with section 5.2 ‘Start-up’.
4.5.2 - AVAILABLE INPUT VOLTAGES: HARDWARE MODIFICATIONS

4.5.2.1 - INPUT VOLTAGE 120VAC OR 277VAC.

1. If input voltage is 120/277VAC, the utility supply wires should be connected to input terminals provided on bottom transformer cabinet (11b in Fig.20). The transformer will convert the utility voltage (120/227VAC) to 240VAC. This 240VAC is connected to input terminals of UPS 6, 7, 8 (11b in Fig.19).

2. The bypass tap setting should be set as 240VAC. To confirm this check the following as per fig.8 and 8a.
 2.1. Yellow wire B to should be connected to faston 72 (park) on Printed Circuit Board (PCB) part 1113-D.
 Blue wire A to should be connected to faston 74 (connect) on PCB part 1113-D.

3. Connect the utility supply wires to terminals L, N and GND (equipment grounding conductor). See figure 9. Ground connection is essential!

4. For the output voltage proceed with section 4.5.3.

Figure 8. LP11 924 6&10 kVA: Bypass tap change

Figure 8a. LP11 924 6&10 kVA: Rear view

Figure 9. LP11 924 6&10 kVA: 120 or 277Vac Input terminals
4.5.2.2 - INPUT VOLTAGE 208 OR 240VAC.

1. Input voltage is 208Vac. In this case the bypass tap on the output transformer must be set as 208VAC. Please refer to fig. 8 and 8a. Proceed as follows:

 1.1. Connect blue wire A to faston 61 (park) on Printed Circuit Board (PCB) part 1113-D.
 1.2. Connect yellow wire B to faston 74 (connect) on PCB part 1113-D
 1.3. Proceed with step 3.

2. Input voltage is 240Vac. In this case the bypass tap on the output transformer must be set as 240VAC. Please refer to fig. 8 and 8a. Proceed as follows:

 Connect yellow wire B to faston 72 (park) on PCB part 1113-D.
 Connect blue wire A to faston 74 (connect) on PCB part 1113-D.

3. Connect the utility supply wires to terminals 6 (L1), 7 (L2) and 8 (equipment grounding conductor). See figure 10. Ground connection is essential!
 If a neutral wire is part of the site wiring provided, we suggest isolating this wire for future use or other applications.

 ![Figure 10. LP11 924 6&10 kVA: Output (grey) / input terminals](image)

4. For the output voltage proceed with 4.5.3.
4.5.3 - AVAILABLE OUTPUT VOLTAGES: HARDWARE MODIFICATIONS

The following output voltages are available: 120, 208, 220, 230, 240, 277 Vac. An insertion bridge is placed between terminals 2 and 3. An extra insertion bridge was delivered with the unit (in a plastic bag) to enable other output voltages.

4.5.3.1 – OUTPUT VOLTAGE 277VAC

The off-factory setting is 277VAC; make sure the following steps are implemented:

1. An insertion bridge is placed between terminals 2 and 3.
2. The output tap is set at 277VAC: Please refer to fig.11 and 11a and check the following.
 - White wire W is connected to faston 67 (connect) on Printed Circuit Board (PCB) part 1113-C
 - Brown wire F is connected to faston 65 (park) on PCB part 1113-C
 - Yellow wire L is connected to faston 66 (park) on PCB part 1113-C
3. Connect the output wires to the terminals 1 (L1) and 4 (L2) and ground wire to terminal 5. Ground connection is essential! See figure 11b.
4. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

Output tap changed to 208 Volt

Output tap changed to 240 Volt

Output tap factory setting 277 Volt

Figure 11. LP11 924 6&10 kVA: Output tap change

Figure 11a. LP11 924 6&10 kVA: Rear View

Figure 11b. LP11 924 6&10 kVA: 277 Vac output connection
4.5.3.2 - OUTPUT VOLTAGE 208VAC

1. Check there is an insertion bridge between terminals 2 and 3 (Fig.12)
2. The factory setting of the output tap (277Vac) has to be changed to 208Vac. Please refer to fig.11 and 11a and proceed as follows.
 2.1. Connect the White wire W to faston 65 (park) on Printed Circuit Board (PCB) part 1113-C
 2.2. Connect the Brown wire F to faston 66 (park) on PCB part 1113-C
 2.3. Connect the Yellow wire L to faston 67 (connect) on PCB part 1113-C
3. Connect the output wires to the terminals 1 (L1) and 4 (L2). Connect the ground wire to terminal 5. Ground connection is essential! See figure 12.
4. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

![Diagram](Figure 12. LP11 924 6&10 kVA: 208 Vac output connection)

4.5.3.3 - OUTPUT VOLTAGE 120VAC SPLIT-PHASE

1. The factory setting of the output tap (277Vac) has to be changed to 240Vac. Please refer to fig. 11 and 11a. Proceed as follows:
 1.1. Connect the White wire W to faston 65 (park)
 1.2. Connect the Yellow wire L to faston 66 (park)
 1.3. Connect the Brown wire F to faston 67 (connect)
2. Connect the load wires between the terminals 1 (L1) and 2 (N) (120V), and between the terminals 3 (N) and 4 (L2) (120V). Connect the ground wire to terminal 5. Ground connection is essential! Do not remove the insertion bridge between terminals 2 and 3. See figure 13.
3. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

![Diagram](Figure 13. LP11 924 6&10 kVA: 120 Vac split-phase output connection)
4.5.3.4 - OUTPUT VOLTAGE 220/230/240VAC

1. The factory setting of the output tap (277Vac) has to be changed to 240Vac. Follow the procedure as described in section 4.5.3.3 steps 1.1, 1.2 and 1.3.
2. Connect the load wires between the terminals 1 (L1) and 4 (N). Connect the ground wire to terminal 5. Ground connection is essential! Do not remove the insertion bridge between terminals 2 and 3. See figure 14.
3. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

![Output Connection Diagram](image1)

Figure 14. LP11 924 6&10 kVA: 220/230/240 Vac output connection

4.5.3.5 - OUTPUT VOLTAGE 120VAC SINGLE PHASE

1. The factory setting of the output tap (277Vac) has to be changed to 240Vac. Follow the procedure as described in section 4.5.3.3 steps 1.1, 1.2 and 1.3.
2. Remove the insertion bridge between terminals 2 and 3.
3. Place this insertion bridge between terminal 1 and 2.
4. Place the extra insertion bridge (delivered with the unit) between terminals 3 and 4.
5. Connect the load wires between connectors 1 (or 2) and 3 (or 4).
 For 10kVA units: If the lug/terminal does not allow to install two wires (i.e. load wire and insertion bridge) in one terminal, proceed with step 8.
6. Connect the ground wire to terminal 5. Ground connection is essential!
7. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

![Output Connection Diagram](image2)

Figure 15. LP11 924 6&10 kVA: 120 Vac single phase output connection
For 10kVA units:

8. Remove all insertion bridges between the terminals.

9. Split both the load wires and spread one wire over terminal 1-2 and the other over 3-4 respectively.

10. Connect the ground wire to terminal 5. Ground connection is essential! See figure 15a.

11. Return to either section 4.5.1.1 step 5 or section 4.5.1.2 step 5. Pay special attention to step 11 in these sections, i.e. do not forget to modify the display software as described in section 4.5.4.

![Figure 15a. Output cable splitting for 10kVA 120V 2-wire](image)

4.5.4 - INPUT/OUTPUT VOLTAGES: SOFTWARE MODIFICATION.

NOTE
by completing the following procedure you realize that the values shown in the LCD correspond with the actual input/output voltages:

1. Switch on the circuit breakers ‘utility’ (8 in Fig.19) and ‘bypass’ (9 in Fig.19) (see also section 5.2, step 1-2)

2. Go to the set-up menu. See section 5.4.4 ‘Set-up Menu’

 ![SETUP SCREENS ENTER/RESET exit]

3. Using the push-buttons ‘up’ and ‘down’ you can scroll through the several set-up screens. ‘Enter/Reset’ confirms the screen choice. Go to the set-up screen ‘INPUT VOLTAGE’.

 ![INPUT VOLTAGE 277V]

4. Here you can change the input voltage to the desired value for example 120 Volt. The value of the input voltage blinks. Scroll through its settings by using the push-buttons ‘up’ and ‘down’, the new setting is confirmed by pressing ‘Enter/Reset’.

 ![INPUT VOLTAGE CHANGE TO 120V]

5. Go to the set-up screen ‘OUTPUT VOLTAGE’.

 ![OUTPUT VOLTAGE 277V]

6. Here you can change the output voltage to the desired value for example 120 Volt. The value of the input voltage blinks. Scroll through its settings by using the push-buttons ‘up’ and ‘down’, the new setting is confirmed by pressing ‘Enter/Reset’.

 ![OUTPUT VOLTAGE CHANGE TO 120V]

7. To return to the default screen scroll to the set-up screens first and press ‘Enter/Reset’. You can also wait 20 seconds: the time-out period of no key activity.

8. You can now proceed with section 5.1 or section 5.2.
4.5.5 - INSTALLATION OF EXTERNAL BATTERY CABINET

The LP11 924 UPS is supplied with an external battery cabinet (24 in Fig.21). The battery cabinet should be wired before connecting to UPS. Open the front and rear covers of the battery cabinet. Connect the batteries as shown in figure 16a.

WARNING! Batteries contain large amount of energy stored in them
DO NOT short the batteries while connecting
Only authorized person should do the battery wiring

All the required hardware and cables are supplied along the battery cabinet in a separate box. Make sure the MCBs (22 in Fig.21) are in OFF position (down) before connecting. Connect the positive and negative ends of the battery string to the MCB(22 in Fig.21) as shown in figure 16a.

![Battery cabinet wiring](image)

Figure 16a. Battery cabinet wiring

Two glands (19 in Fig.21) and one 3-core battery cable (21 in Fig.21) will be supplied along with UPS. Remove the knockout provided on the front bottom of the battery cabinet. Fix one gland into this opening and take the battery cable through it. Connect positive (Red), Negative (Black) to the MCBs. Connect the earth wire (green) to the earth terminal block (23 in Fig.21).

The battery cabinet can be connected to the DC connector (15 in Fig.19) at the rear panel of the UPS. Be sure to switch off the UPS before proceeding; make sure that the UPS can be switched off without causing damage to the load, and turn all circuit breakers (7,8,9 in Fig.19) into ‘off’ position (down).
1. UPS rear panel: loosen the screws, and remove the metal access cover (20 in Fig.20).

2. Open the DC fuse holders at the rear of the UPS (16 in Fig.19) and make sure that the fuses have been removed.

3. Loosen the screws, and remove the cover plate (11 in Fig.19) and conduit box (17 in Fig.19).

WARNING
The battery voltage is 240Vdc and is NOT isolated from the utility.

4. Break out the indicated part of the conduit box, fix the gland (19 in Fig.21) of the battery cable in this opening.

5. Connect the DC connector of the battery cable (15a in Fig.19) to the DC socket of the UPS (15 in Fig.19). Make sure that the colours match. You will hear a click when the cable is properly installed.

6. Put back the fuses into the DC fuse holder (16 in Fig.19) and re-install the cover plate, access cover and conduit box.

7. If desired a ‘battery disconnected’ alarm device can be installed. Make sure that the UPS is switched off, and disassemble the RS232/Contact Interface Card (12 in Fig.19) from the unit. **If the card is removed during normal operation the UPS will shut down!**

 Remove the wire from connector J3 (pin 1 and 2). Install the wiring of a normally closed contact (e.g. an auxiliary contact of a circuit breaker from battery cabinet) to pin 1 and 2. Re-install the interface card. If the contact is opened, the UPS will generate an ‘EXTERNAL BATTERY FUSE FAILURE’. See section 5.4.2 for more information.

Proceed with section 4.5.1 or section 5.2.
4.5.6 – OPERATING 2 / 3 / 4 PARALLEL UNITS – ADDITIONAL INFO

You may skip this paragraph and proceed with chapter 5 if your UPS will operate as a stand-alone unit.

The RPA option (Redundant Parallel Architecture) allows you to create a redundant UPS system in which 2, 3 or 4 UPS units operate in parallel.

<table>
<thead>
<tr>
<th>RPA</th>
<th>All additional information required for parallel systems is gathered here, in three sections:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- installation (4.5.6.1)</td>
</tr>
<tr>
<td></td>
<td>- start-up (4.5.6.2)</td>
</tr>
<tr>
<td></td>
<td>- use / maintenance (4.5.6.3)</td>
</tr>
</tbody>
</table>

4.5.6.1 - NOTES CONCERNING INSTALLATION OF A PARALLEL SYSTEM

1. All inputs of the UPSs must be supplied from the same phase. This is to enable bypass operation of the parallel system. All inputs must be individually protected by fuses in the installation. The values of these fuses should correspond to the values mentioned in section 4.5 table 1.

2. All outputs must be connected together, supplying the load. It is advised to install switches (S 1-2, fig. 17) in the output wiring, in order to be able to isolate a unit from the remaining system for service and maintenance purposes. It is advised to make a Neutral-to-Ground bonding in the output junction.

3. The diameter of input and output cables must be according to the table in the installation drawings (see appendix). Cables with different diameters can cause tripping fuses in the UPS and/or the installation.

4. The length of all input cables from the input junction (Li, fig. 17) to the UPS inputs should be made as equal as possible (20% tolerance is allowed). The same applies to the cables from the outputs to the output junction (Lo, fig. 17). The minimum length of the input as well as the output cables is 3 meters / 10 feet.

Figure 17. Installation of parallel operating UPSs
5. The right option slot (14 in Fig.19) at the rear of the unit contains the RPA-card. Before the parallel system can be put into operation a unique number has to be appointed to each UPS in the system. This can be 0 or 1. Give 0 for the first unit and 1 for second unit.
- loosen the screws, remove the RPA-card
- set the dipswitch to the appointed number (fig. 18)
- re-install the RPA-card, fasten the screws.

Do NOT install the network cables between the RPA-cards of the units yet!

![Rear view of the UPS and RPA Card](image)

Figure 18. Appointing a unique number to each UPS in the system on the RPA card

6. In the UPS many parameters can be set. It is advised to keep the same setting for each parameter in each UPS in the parallel system. In any case the following parameters are critical and should have equal settings:
- auto restart (on/off, see section 5.4.3)
- output voltage (120/208/220/230/240/277Vac, see section 5.4.4)
- output frequency (50/60 Hz, see section 5.4.4)

It is absolutely required that these parameters are set to the same value. If you’re not sure that the units have equal settings:
- make sure that the RPA-cards of the units have not been interconnected yet
- make sure that utility power is connected to the UPS
- start each unit individually (see section 5.2), check / change the parameters, and switch the unit off again.

7. Interconnect the RPA-cards of the units, using the network cable that factory supplied. See figure 17 (dotted line). Only install the cables that were delivered with the UPSs! On the first and the last UPS in the system only one RPA-socket is used to interconnect the UPSs. A bus terminator must be placed in the other (free) RPA-socket. The required bus terminators have been delivered with the unit.

4.5.6.2 - NOTES CONCERNING STARTING UP THE PARALLEL SYSTEM

For starting up the system please refer to section 5.2.

After switching on all units the LP11 924 UPSs will show the following display:

![Auto Restart Off, Press Enter](image)

After pressing the ‘Enter/Reset’ button on one of the units the system will start up. All units will display the standard screen. The number in the lower right corner indicates the number of the UPS in the system.

![LP 6-11U 924 Load 40% 2](image)

If the parameters mentioned in section 4.5.6.1 step 6 are not set to the same value the UPS will display the following screen after start-up:

![Auto Restart Off Setting Mismatch](image)

In this case check and correct the setting of the parameters as mentioned in section 4.5.6.1, step 6.
4.5.6.3 - NOTES CONCERNING USE / MAINTENANCE OF A PARALLEL SYSTEM

ECO-mode:
If UPS are operating in parallel, the ECO-mode feature is not available.

No-load shutdown:
If UPS are operating in parallel, the no-load shutdown function is not available.

Manual bypass:

CAUTION
If you want to switch one of the UPSs to bypass operation using the manual bypass switch (switch is turned into position ‘2’) then all UPSs in the parallel system have to be switched to bypass operation in order to prevent damage.

Shutdown and maintenance:

NOTE
Refer maintenance to qualified and skilled personnel only.
Refer to section 1.3 for further details.

Determine whether UPS # will
- just be electrically isolated (procedure a) or
- physically removed (procedure b).

Procedure a: isolation of a unit (‘UPS #’) from the parallel system

1. A manual transfer to the bypass supply may be required. Ensure that on each unit of the system:
 - the circuit breaker ‘bypass on/off’ (9 in figure 19) is in position ‘on’
 - the LCD screen shows the default screen
 - the LCD screen does not show any alarm concerning bypass availability.

2. Determine whether or not the system is redundant, i.e. will the system be able to supply the current load if UPS # is removed?
 2a System is not redundant:
 - turn the manual bypass switch of all units into position ‘2’. Proceed with step 3.
 2b System is redundant:
 - proceed with step 3.

3. Switch off UPS # with the on/off switch.
 Switches (utility, bypass, on/off) of the remaining UPSs in the parallel system should remain in the “on” position.

4. Remove the input fuse from the input of UPS # (F1-4 in figure 17).

5. Separate the output of UPS # from the output junction (S1-4 in figure 17). Do not disconnect the network cable(s) and/or bus terminator!

6. The unit is now electrically isolated from the parallel system.
 Have maintenance work performed by qualified service personnel only.

To re-enter UPS # into the system:

1. Reinstall the input fuse F #.
2. Close switch S # to connect the output of UPS # to the output junction.
3. Turn switch ‘UPS on/off’ into position ‘on’.
4. If applicable: turn the manual bypass switches of all units back into position ‘1’.
Procedure b: isolation and removal of a unit (‘UPS #’) from the parallel system:

1. A manual transfer to the bypass supply may be required. Ensure that on each unit of the system:
 - the circuit breaker ‘bypass on/off’ (9 in figure 19) is in position ‘on’
 - the LCD screen shows the default screen
 - the LCD screen does not show any alarm concerning bypass availability.
2. Turn the manual bypass switch of all units into position ‘2’.
3. Switch off UPS # with the on/off switch.
 Switches (utility, static bypass, on/off) of the remaining UPSs in the parallel system should remain in the “on” position.
4. Remove the installation fuse from the input of UPS # (F1-4 in figure 17).
5. Separate the output of UPS # from the output junction (S1-4 in figure 17).
6. Disconnect all wiring from the UPS, including the network cable(s).
7. The unit is now fully disconnected from the parallel system, it may be removed.
 Have maintenance work performed by qualified service personnel only.

To re-enter UPS # into the system:
1. Reinstall the I/O power cables and network cables.
2. Reinstall the input fuse F #.
3. Close switch S # to connect the output of UPS # to the output junction.
4. Turn switch ‘UPS on/off’ into position ‘on’.
5. Turn the manual bypass switches of all units back into position ‘1’.
5 - OPERATION

5.1 - DESCRIPTION OF FRONT AND REAR PANEL

1 LCD screen
2x16 characters, shows UPS system data, status messages, settings. The language is selectable: English, German, French, Italian, Spanish. Section 5.4.4 describes the selection procedure.

2-4 Push-buttons
With the button keypads ‘Down’ (2) and ‘Up’ (4) you can scroll through the several screens, with keypad ‘Enter/Reset’ (3) a selection is confirmed. Keypad activity is accompanied by a short beep. If there is no keypad activity during 20 seconds the LCD screen will return to the default screen (except for the service screens, see section 5.4.3).

5 LED ‘operation’ indicates normal operation.

6 LED ‘alarm’, indicates an alarm situation, accompanied by alarm messages on the display and a sounding buzzer. See section 5.4.2 for more information.

7 Switch ‘UPS on/off’, turns on/off the complete UPS, including the automatic bypass!

8 Circuit breaker ‘Utility on/off’, protection fuse for utility input and battery charger.

9 Circuit breaker ‘Bypass on/off’, fuse to protect the system in case of severe overload or short circuit in the UPS load.

10 Manual Bypass Switch: 1 = Load on UPS 2 = Load on utility

WARNING

In position 2, if the input line is energized, the output is also live regardless the position of the circuit breakers ‘utility’ and ‘bypass’

11 Cover plate, behind it:
11a Output terminals
11b Input terminals

12 RS232/Contact Interface Card, with:
12a - RS232 Interface Port (see section 6.1)
- Emergency shutdown (see 4.5.1 and 6.2)
- Battery disconnected, pin 1-2 (can be used for external signaling).

13 Free option slot for plug-in cards:
- Relay Card (see 6.3)
- SNMP Card (see 6.4)

14 Option slot for RPA (Redundant Parallel Architecture) Card.

15 DC socket / connector.

16 Battery fuse holder

17 Conduit box

18 Cable inlet

Figure 19:
Front and rear panel for 208/240V input
Rear panel of the optional transformer cabinet:

11b Input terminals L, N and GND
17 Conduit box
18 Cable inlet
19 Cable gland
20 Access cover (this cover is not shown in Fig.19 for clarity purpose)
21 3-core battery cable
22 MCB or circuit breaker
23 Earth or ground terminal block
24 External battery cabinet

Figure 20. Rear panel of the for 120/277V input

Figure 21. Interconnection of battery cabinet and UPS
5.2 – START-UP

DANGER, do not touch output terminals

The UPS contains batteries. The output terminals may be electrically live, even when the UPS is disconnected from the utility supply. Dangerous voltages may be present during battery operation.

NOTE

The UPS can be started on battery power if the utility input voltage is not available or if circuit breaker 'utility' is in off-position: simply skip step 1. To prevent accidental discharging of the batteries, it is however recommended to proceed with step 1 and start the unit only when the utility input voltage is available.

The numbers between (brackets) refer to figure 19 in section 5.1.

1. Turn breaker 'utility' (8) and breaker 'bypass' (9), both on the rear panel, into position 'on' (up).

2. Some UPS parameters (e.g. voltage, frequency, LCD language) are user selectable. If you want to change one or more settings, please refer to section 5.4.4 'Set-up Menu' now. Changing the settings later is possible, however only after switching off the unit.

3. Turn switch 'UPS on/off' (7 in Fig.19) into position 'on' (up).
 The green LED 'operation' (front panel, 5) will illuminate.

 After switching on the UPS performs a self-test and the display (front panel, 1) will show:

 ![SELFTEST IN PROGRESS]

 After completion of the self-test the output voltage of the UPS is available and the unit is ready for use. The display will show the default screen: model and actual load (values are examples)

 ![LP 6-11U 924 LOAD 37%]

 In case of a system failure the self-test results in a failure message; this message is displayed for 30 seconds before the self-test is repeated automatically. If the faulty situation persists, switch off the UPS and contact your dealer. See chapter 9 for more information.

4. Though the batteries were fully charged when the UPS left the factory, they might have lost some energy during transport and/or storage. It is recommended to allow the UPS to recharge the batteries for a few hours. This way you ensure that the UPS can provide sufficient runtime in case of a utility power failure.

5. Check the position of the manual bypass switch (10 in Fig.19).
 If it is in position "2", turn it into position "1".

6. If not yet switched on, the equipment connected to the UPS can be switched on now; operate as usual.

If you start up a parallel system please refer to section 4.5.5.2 for additional information.
5.3 - SHUTDOWN

Once the unit is in operation, there is no need to switch the unit on/off during use. If the manual bypass switch (10 in Fig.19) is in position ‘1’, switching off by the on/off switch (7 in Fig.19) results in a total absence of the output voltage (also the bypass voltage) of at least 5 secs.

If you want to shut down a unit that is part of a parallel system, please refer to section 4.5.6.3.

If you want to shut down a standalone UPS: first determine whether

- the load may be switched off (section 5.3.1) or
- the load may not be switched off (section 5.3.3).

NOTE
Refer maintenance to qualified and skilled personnel only.
Refer to section 1.3 for further details

5.3.1 - SHUTDOWN OF THE UNIT WHEN LOAD SWITCHING OFF IS ALLOWED

1. Make sure that the load has been switched off.

2. Turn the switch ‘UPS on/off’ and circuit breakers ‘utility on/off’ and ‘bypass on/off’ into position ‘off’, in any sequence.

5.3.2 - RESTART

1. Follow section 5.2 ‘Start-up’ step 1-6.

5.3.3 - SHUTDOWN OF THE UNIT WHEN LOAD SWITCHING OFF IS NOT ALLOWED

This situation requires operation of the manual bypass switch. See sections 3.5 and 5.1 for general information on the manual bypass switch (10 in fig. 19).

1. Make sure that:
 - the circuit breaker ‘bypass on/off’ (9 in Fig.19) is in position ‘on’
 - the LCD screen shows the default screen
 - the LCD screen does not show any alarm concerning bypass availability.

2. Turn the manual bypass switch into (service) position ‘2’.
 The LCD screen should show: ‘ON MANUAL BYPASS’

3. Turn the switch ‘UPS on/off’ and circuit breakers ‘utility on/off’ and ‘bypass on/off’ into position ‘off’, in any sequence.
 The power supplied to the load will not be affected.

5.3.4 - RESTART

1. Follow 5.2 ‘Start-up’ step 1-6.

5.3.5 - EMERGENCY SHUTDOWN SWITCH

If an emergency shutdown switch has been installed (see section 4.5.1.1-2, step 6) the UPS will stop immediately when the switch is opened. Restart is only possible after closing the switch and turning the UPS off and on again with the UPS on/off switch (7 in Fig.19).
5.4 - USE

The UPS is operated via the push-buttons (fig. 19, 2-3-4) and the LCD display (front panel, 1). Furthermore the UPS can be controlled via the RS232/contact interface port (12a in Fig.19). For more information see 6.1.

The menus on the display can be divided into 5 groups:

1. Standard screen
2. Information menu (section 5.4.1)
3. Status- and alarm menu (section 5.4.2)
4. Service menu (section 5.4.3)
5. Set-up menu (section 5.4.4)

The standard screen shows UPS model and actual load.

```
LP 6-11U 924
LOAD 37%
```

5.4.1 - INFORMATION MENU

When the default screen is displayed the first information screen can be entered by depressing the ‘up’ key (front panel, 4). Using the ‘up’ and ‘down’ keys (front panel, 4 and 2) you can scroll through several information screens. After the last information screen the default screen will appear.

The screens display the following information:

```
INPUT LINE   277V
             2.45Kw       60Hz
```

Utility voltage and utility frequency, and the power delivered by the utility.

```
OUTPUT LINE   277V
LOAD 50%   60.0Hz
```

Output voltages and output frequency, and the power delivered by the UPS (as % of the nominal UPS rating).

```
BATTERY      23°C
271V         1.9A
```

The temperature near the batteries, the battery voltage and the battery current (charging: + value, discharging: - value).

```
AUTONOMY TIME
LEFT 5:27:00
```

The remaining battery runtime (or autonomy) during a utility failure.

```
OPERATING TIME
0YEAR   29DAYS
```

The total operating time of the UPS.
5.4.2 - STATUS AND ALARM MENU

The UPS alerts the user with a standard alarm screen that the operating mode has changed and/or that an alarm situation occurs:

The actual operating mode, the possible modes are mentioned below. The lower line -if displayed- shows that an alarm occurred. More information can be retrieved with the 'up' key. If no further information is available, the second line is blank.

Possible operating modes:

ON LINE The normal operating mode. For more information see section 3.2.
ON BYPASS Overload or failure situation. For more information see section 3.4.
ON BATTERY For a detailed description of this mode see section 3.3.
OUTPUT OFF No power is delivered to the load. This can be the result of a command via the RS232 Port, or because no electric energy is available (utility failure, depleted batteries).
ON MANUAL BYPASS Service mode. For more information see section 3.5.

Depressing the 'up' key from the standard alarm screen shows, in priority order, which alarms are active. Scroll through the screens with the 'up' and 'down' keys. Alarm message texts can succeed each other. The following messages are possible:

The output capacitor C2 is defective. Contact your GE Authorized Service.

The load exceeds the rated output power of the UPS, and the output voltage can no longer be guaranteed. This text alternates with the following screen:

showing the actual load as % of the nominal UPS rating. These messages are displayed if the load is > 100%.

If the load exceeds 150% the UPS will immediately switch to bypass, assuming that the conditions for a transfer to bypass are fulfilled. If an overload condition between 100-150% persists, the UPS can eventually also switch to bypass operation due to temperature protection. If a transfer to bypass is inhibited (due to voltage or frequency errors of the utility supply) the UPS may automatically switch off within a few seconds (load dependent). Output power is lost at that moment. To avoid these problems, be absolutely certain that the power demands of the protected equipment are within the limits of the UPS.

The temperature of the heatsinks or output transformer is too high. As a result the output voltage may be transferred to bypass.

The operating temperature can rise to intolerable levels as a result of:

- extreme environmental temperature
- lack of proper ventilation
- an overload situation
- fan failure

If the UPS operates in ‘on line’ mode, it will switch to bypass until the temperature is normal again. If however the UPS operates ‘on battery’, a shutdown will occur and output power is lost.

The internal DC voltage is too high, internal failure.

The output voltage of the battery charger is too high, internal failure.

The battery temperature is too high due to a battery failure or a too high ambient temperature.
BATTERY CHARGERY

NO FLOAT

After 24 hours of charging time, the battery voltage did not reach the normal float voltage. This may be caused by faulty batteries, too many battery packs connected or a charger fault.

CAPACITOR C1

CAPACITY LOW

The main DC-capacitor needs replacement due to aging or failure.

LOADnotPROTECTED

INVERTER OFF

Due to a failure the output converter’s output is not available. As a result the load may have been transferred to bypass.

BATTERY DEPLETED

The remaining runtime is zero. As a result the load may have been transferred to bypass.

BATTERY LOW

The remaining run time is less than the set time (standard 2 minutes). This text alternates with the following screen:

UPS SHUTDOWN

LEFT 2 MINUTES

The output voltage can be lost after the indicated time due to discharged battery. Controlled shutdown of any computer equipment is absolutely necessary at this point. (Using the RS232 or SNMP communications interface, this procedure can be initiated automatically on unattended systems). If the UPS operates at 100% load, the shutdown procedure should be completed within 2 minutes after the ‘battery low’ alarm started. When the batteries are fully discharged, the UPS is no longer able to power the connected equipment.

BYPASS ERROR

FUSE FAILURE

The static bypass circuit breaker (rear panel, 9) is in ‘off’ (down position): no bypass voltage available. Utility voltage is available. If not manually operated, this may have been caused by an overload situation.

INPUT ERROR

FUSE FAILURE

The utility circuit breaker (rear panel, 8) is in the ‘off’ (down position): no line voltage available, bypass voltage is available. If not manually operated, this may have been caused by an internal system failure.

INTERNAL BATTERY

FUSE FAILURE

The internal battery fuse is defective; this may have been caused by an internal system failure. This alarm also appears if no batteries are installed.

EXTERNAL BATTERY

FUSE FAILURE

The external battery has been disconnected from the system: its energy reserve is not available. See section 4.5.5 step 7 for details.

REPLACE BATTERY

The batteries are (almost) chemically worn out. If the batteries are aged, they must be replaced as soon as possible to ensure full protection for your equipment (see section 8.4).

INPUT out LIMITS

137V 60.0Hz

The utility voltage and/or utility frequency are outside UPS input tolerance (see chapter 10, specifications).

INPUT out LIMITS

197V 60.0Hz

The utility voltage and/or utility frequency are outside bypass input tolerance but inside UPS (rectifier) input tolerance (see chapter 10, specifications). Bypass operation is inhibited: if for whatever reason the output converter is unable to deliver the required output, output power is lost.
The output converter frequency is not synchronized to the utility (input) frequency. In this situation the automatic bypass switch is not able to transfer the load from output converter to bypass and reverse: automatic bypass operation is inhibited: if for whatever reason the output converter is unable to deliver the required output, output power is lost. (see section 3.5). Synchronization is only possible if the utility frequency remains within certain limits (see chapter 10).

The remaining runtime. This figure is counted down during battery operation until either the utility returns or the batteries are depleted.

The output is switched off due to a faulty situation, indicated by the second line.

The output will be switched off by a remote command (RS232/SNMP). The second line indicates the time until shutdown.

The output is switched off by a remote command (RS232/SNMP). The second line indicates the time until wake-up.

The wire on connector J3 pin 3-4 (rear panel, plug-in card –12 in Fig.19) is interrupted. The output is no longer available. To restart the unit, restore the connection and turn the on/off switch (7 in Fig.19) off and on again.

5.4.3 - SERVICE MENU

When the default screen is displayed you can enter the first service screen by depressing the keys 'down' (2) and 'Enter/Reset' (3) simultaneously for approx. 1 second. Using the 'up' (4) and 'down' (2) keys you can scroll through several service screens.

The intro service screen. 'Enter/Reset' returns to the default screen.

The serial number of the UPS.

Release number of the installed software and production code of the UPS.

Service information about fan speed (min. 10, max. 30) and internal DC voltage.

Service information on internal temperature levels, values in mV over the temperature sensors.

First line: service information on charger. '1' = batteries have reached float voltage. Second line: service information on output converter.
Service information on internal timer.

Frequency tracking range: output converter frequency will follow the bypass frequency within these limits before returning to its own internal frequency. Standard setting: nominal ±2%. Can be changed into nominal ±4% or ±6%. See 5.4.4 Set-up Menu.

No-load shutdown: after a 10 minutes delay the UPS will shut down during utility failure if the load is < 2%. It will restart after the utility returns or when the unit is switched off and on again.

Default setting = 1 (active). For disabling this feature see 5.4.4.

Start of the manual Quick Battery Test.
See for more information section 5.5.2 'Quick Battery Test'

Start of the manual Deep Battery Calibration Test.
See for more information sections 5.5.3 'Deep Battery Calibration Test'.

Service information on internal UPS components.

Service information on internal UPS components.

Service information on internal UPS components.

Service information on internal UPS components

Service set-up information whether the bypass is enabled (default) or disabled. If disabled: UPS will NOT go to bypass. For disabling the bypass refer to the set-up menu (5.4.4).

Service set-up information about the total battery capacity. Information about the actual battery charge condition. For changing the programmed battery capacity refer to the set-up menu (5.4.4).

Service set-up information about frequency tracking speed for the inverter to follow the bypass frequency. LOW (1Hz/sec.) is the normal value and default. HIGH (5Hz/sec.) may be suitable if the UPS is connected to a generator with fast frequency changes and the UPS must be synchronized to prevent alarms. For changing the lock speed refer to the set-up menu (5.4.4).

Service set-up information about the ECO-mode. By pressing 'Enter/Reset' the ECO-mode can be enabled or disabled, depending on the actual status. In this way the load will be supplied by way of the electronic bypass. If the ECO-mode is disabled the load will be supplied by the inverter. See also 5.6.5. If RPA used, ECO mode must be set to "Disabled"

Service set-up information about the auto restart function. This function can be switched on or off by pressing 'Enter/Reset', depending on the actual status. See also 4.5.6.1 step 6.
5.4.4 - SET-UP MENU

To enter the set-up menu:
1. Be sure the UPS is switched off.
2. Press push-button 'Enter/Reset' (front panel) and then turn switch ‘UPS on/off’ (rear panel) into position ‘on’ (up). Keep Enter/Reset pressed until set-up menu appears.

Using push-buttons ‘up’ and ‘down’ you can scroll through the several set-up screens, ‘Enter/Reset’ confirms a screen choice. After selecting a set-up screen you can scroll through its settings using the push-buttons ‘up’ and ‘down’, a setting is confirmed by pressing ‘Enter/Reset’. To abort the set-up procedure (i.e. without changing the setting) just wait the 20 seconds time-out period after which the default screen will return.

<table>
<thead>
<tr>
<th>SETUP SCREENS</th>
<th>The intro set-up screen. ‘Enter/Reset’ returns to the default screen. You can also wait 20 seconds: the time-out period of no key activity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER/RESET exit</td>
<td>The intro set-up screen. ‘Enter/Reset’ returns to the default screen. You can also wait 20 seconds: the time-out period of no key activity.</td>
</tr>
</tbody>
</table>

Pressing ‘up’ displays the screens in the following order:

<table>
<thead>
<tr>
<th>WARNING: OUTPUT CHANGES ON LINE</th>
<th>A short reminder that the new settings will be valid immediately after depressing the ‘Enter/Reset’ key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGUAGE</td>
<td>Changes the language of the screen messages: you can select English, German, French, Italian, Spanish.</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>Changes the language of the screen messages: you can select English, German, French, Italian, Spanish.</td>
</tr>
<tr>
<td>INPUT VOLTAGE 277V</td>
<td>The system input voltage: Range 120/208/240/277 Vac.</td>
</tr>
<tr>
<td>OUTPUT FREQUENCY 60.0Hz</td>
<td>The system output frequency. Range: 50/60 Hz.</td>
</tr>
</tbody>
</table>

CAUTION
Changing of the output frequency can cause severe damage of equipment connected to the UPS: Make sure that the new frequency is suitable for the connected equipment.

<table>
<thead>
<tr>
<th>FREQUENCY RANGE 2%</th>
<th>The frequency tracking range (in which the output converter frequency will follow the bypass frequency). Range: 2/4/6 %. If the bypass frequency is beyond the setting, the output converter will return to the fixed crystal controlled frequency.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL LOCK SPEED NORMAL</td>
<td>The frequency tracking speed range (in which the output converter frequency will follow the bypass frequency). Range: NORMAL (1Hz/sec), HIGH (5Hz/sec).</td>
</tr>
<tr>
<td>BATTERY CAPACITY 76Ah</td>
<td>Battery capacity. Range: 7 through 590 Ah, in 1 Ah steps. For LP 6-11U924 units the battery capacity is 76Ah and for LP 10-11U924 units it is 92Ah. This is set in the factory and should not be changed.</td>
</tr>
</tbody>
</table>

NOTE
If you proceed, the information about the actual battery condition (as a result of a deep battery test) is lost. For more info see section 5.5.3 ‘Deep Battery Test’.

| FAN CURVE 0 | The fan speed. Range: 0 / 1. Proper setting optimizes the cooling capacity of the fans installed. **DO NOT READJUST!** Incorrect setting may lead to reduced lifetime of the power semiconductors. |
5.5 - TEST SCREENS

These screens show the test procedure, either started from the service menu (front panel keys) or via the UPS monitoring software (RS232/SNMP). The upper line indicates the kind of test, the second line its status.

Upper lines: second line:

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATUS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL SYSTEM</td>
<td>TEST START</td>
<td>the test will start soon</td>
</tr>
<tr>
<td>QUICK BATTERY</td>
<td>TEST ACTIVATED</td>
<td>the test is running</td>
</tr>
<tr>
<td>CALIBRATE BAT</td>
<td>TEST SUCCESSFUL</td>
<td>the test has been completed successfully</td>
</tr>
<tr>
<td>BYPASS</td>
<td>TEST FAILED</td>
<td>the test has not been completed successfully</td>
</tr>
</tbody>
</table>

5.5.1 - BATTERY TEST, GENERAL

Automatic test: Every 500 operating hours the UPS conducts automatic battery tests to ensure that the batteries and the wiring are able to support power failures. The tests do not cause any interruption in the functioning of the unit.

Manual test: A manual battery test can be activated
- either through an interface kit, via the RS232 or SNMP Interface Port (please refer to the manual of your interface package),
- or via the front panel: see below

5.5.2 - QUICK BATTERY TEST

From the standard menu first enter the service menu (press the ‘down’ and ‘Enter/Reset’ keys simultaneously, then press the ‘down’ key until the following screen appears:

QUICK BATTERY TEST PRESS ENTER

The ‘Enter/Reset’ key confirms the selection, and the screen shows:
The test status (indicated by the second line) can be:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST ACTIVATED</td>
<td>testing</td>
</tr>
<tr>
<td>TEST SUCCESSFUL</td>
<td>battery has been tested with positive result</td>
</tr>
<tr>
<td>TEST FAILED</td>
<td>the batteries should be replaced</td>
</tr>
<tr>
<td>NOT AVAILABLE</td>
<td>battery capacity too low to start the test</td>
</tr>
</tbody>
</table>

If the batteries are dangerously close to being worn out, a low priority alarm ‘replace battery’ will be generated. The batteries must be replaced as soon as possible (see section 8.4).

NOTE

If the manual test is started immediately after installation or after a power failure, the UPS may generate a false ‘replace battery’ alarm as the batteries have been (partly) discharged during transport/storage or during the power failure.

5.5.3 - DEEP BATTERY TEST

The runtime as shown on the LCD screen is calculated, and the value is initially based on the capacity of new batteries. As batteries age, their capacity deteriorates, and as a result the initial battery capacity may be too unreliable for a proper runtime prediction. The UPS is able to keep track of the aging process, if a ‘deep battery test’ (battery calibration test) is executed regularly. During such a test the condition of the batteries is tested, and the result of the test is stored, and used by the UPS system for future runtime calculations.

We advise performing a deep battery test on a regular basis. For accuracy reasons the interval should depend on the number of discharges. With one discharge per month a 6 month interval is sufficient. If the discharge interval is shorter than once a week a monthly deep battery test is advised.

A deep battery test can be started only if the following conditions are met:

- The load should be more than 30% of nominal load
- The batteries should be fully charged (100% on screen)
- There are no alarms at the time the test is started.

Procedure:

From the standard menu first enter the service menu (press the ‘down’ and ‘Enter/Reset’ keys simultaneously for 2 seconds). Subsequently press the ‘down’ key until the following screen appears:

CALIBRATE BAT
Press DOWN+ENTER

The following screen appears:

CALIBRATE BAT
TEST ACTIVATED

The test is executed, this may take a few minutes with standard battery and full load. Partial load and/or batt. extension packs can lengthen the test period considerably. Do not change the load during the test, i.e. do not switch off or on connected equipment!

The deep battery test discharges the batteries to ‘battery low’ alarm level (see section 5.4.2 ‘battery low’). Please note that immediately after a deep battery test the expected run time is very short: allow the UPS to recharge its batteries.

After the test the second line informs about the result:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST SUCCESSFUL</td>
<td>The test has been completed successfully</td>
</tr>
</tbody>
</table>
| TEST FAILED | The test could not be executed properly: not all test conditions were fulfilled. The UPS system was not informed about the actual battery condition!
5.6 - OTHER FEATURES

5.6.1 - SHUTDOWN

'Remote shutdown': Using communication capabilities, the computer can direct the UPS to turn itself off following controlled shutdown of the system. Subsequently the UPS will remain off for at least a few seconds (see also 6.1). LED 'operation' will blink green. The unit will start up again as soon as the utility returns.

'No-load shutdown': The UPS will also switch off if the load is < 2% of the maximum load, and the input is absent for more than 10 minutes. For more information see section 5.4.2, message 'SHUTDOWN ALARM'.

NOTE: If the UPS operates in parallel, the no-load function is not available.

'Emergency shutdown': for more information see section 5.4.2, message 'IMMEDIATE SHUTDOWN'.

5.6.2 - UTILITY START

The UPS is able to start, even if the batteries are not connected. Alarm messages 'BATTERY FUSE FAILURE' and 'BATTERY DEPLETED' will be shown. The run time is zero.

5.6.3 - SLEEP AND WAKE-UP

GE Digital Energy UPS monitoring software allows you to program a 'sleep period' of the UPS by sending two commands to the UPS:
- shut down after # minutes, and subsequently:
- shut down during # hours.

After the first command the following screen appears:

<table>
<thead>
<tr>
<th>PROG. SHUTDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITHIN 0:09:17</td>
</tr>
</tbody>
</table>

During the sleep period the output voltage is no longer available. LED 'operation' blinks green, and the LCD screen shows the time left until restart:

<table>
<thead>
<tr>
<th>PROG. SHUTDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT 0:14:03</td>
</tr>
</tbody>
</table>

If a utility failure occurs during the sleep period and the battery voltage eventually drops below 200Vdc, the UPS will automatically switch off in order to save battery power. When the main returns the UPS will start up automatically. The programmed sleep time however is lost.

The sleep period can be cancelled by either turning the UPS ON/OFF switch (6) off for a few seconds or by sending the appropriate command via the RS232/SNMP port.

5.6.4 - OVERLOAD PROTECTION IN BYPASS MODE

The UPS will protect itself in case of overload. Upon an overload which is caused by abnormal circumstances the UPS will switch to bypass operation, and subsequently the bypass input fuse on the rear panel will trip. The capacity of the bypass fuse allows it to handle the inrush currents of the equipment connected to the UPS. The fuse will only trip after more than an hour at a bypass current of 40Amp (6kVA) or 63Amp (10kVA).

In order to protect the UPS system the software will cut off the abnormal current:

<table>
<thead>
<tr>
<th></th>
<th>in 10 minutes:</th>
<th>in 1 minute:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6kVA:</td>
<td>36Amp</td>
<td>49Amp</td>
</tr>
<tr>
<td>10kVA:</td>
<td>70Amp</td>
<td>81Amp</td>
</tr>
</tbody>
</table>

Between 36-49Amp (6kVA) 70-81Amp (10kVA) the time is inversely proportional to the input current. We advise to place a distribution fuse slow blow type between UPS input and the utility supply. Please refer to the installation drawing in the appendix.
5.6.5 - ECO-MODE

The UPS is equipped with the ‘ECO-mode’ feature. If the feature is enabled, the load is operated on utility through the electronic bypass switch. If the utility is interrupted or out of limits the load is automatically transferred to the inverter. Operating the load on utility improves the efficiency of the UPS with 5-8% and saves on energy costs. In case of unstable utility there will be many transfers between double conversion mode and ECO mode. We advise not to use the ECO-mode in case of an unstable utility.

After enabling the ECO-mode (please refer to service screens section 5.4.3) the standard menu changes to:

```
LP 6-11U 924
LOAD 37%       ECO
```

NOTE

If the UPS operates in parallel the ECO-mode feature is disabled.

5.6.6 - AUTO RESTART

If this feature is enabled and the unit has shut down (e.g. due to overload) the UPS will start up automatically when the normal situation is restored. The off-factory setting is: enabled.

If the auto restart feature is disabled the unit will not automatically restart when the normal situation is restored but the display will show:

```
AUTO RESTART   OFF
PRESS ENTER
```

After ‘Enter’ the unit will restart. See also section 5.4.3 ‘service screens’.

5.6.7 - SUPERIOR BATTERY MANAGEMENT

Load dependent battery-end voltage:
The allowable final battery voltage depends on the discharge current: the higher the current, the lower the ‘end-of-discharge’ battery voltage. This gives maximum capacity without over discharging. Over discharging results in failure to recover normal capacity and in shortened battery life.

Equalize mode:
When switched on for the first time the UPS will start boost-charging the batteries for 15 hours in order to equalize all battery voltages.

Boost mode:
If after a discharge the battery voltage is lower than 240Vdc, the UPS will charge the batteries with a boost charge voltage of 285Vdc. This enables fast recharging of the batteries. The programmed battery charging mode will change from boost charge into float charge after boost charging twice.

Temperature compensated battery charging:
This feature reduces the battery charge voltage with increasing temperature (-18mV/°C or -32.4mV/°F per 12V battery). As a result poor charging of the batteries under low temperature conditions and overcharging of the batteries under high temperature conditions are prevented.
6 - INTERFACING FEATURES

The UPS is equipped with 3 ‘option slots’ (12-14 in Fig.19). In the most left slot (12 in Fig.19) an RS232/contact interface card is factory installed. See section 5.1. In the middle slot (13 in Fig.19) additional Relay or SNMP plug-in Cards can be installed. The most right slot (14 in Fig.19) allows easy installation of an RPA plug-in Card (Redundant Parallel Operation).

6.1 - RS232 / CONTACT INTERFACE

The RS232/Contact interface (9-pole, sub D, rear panel, 12a in Fig.19) enables advanced communication between the UPS and e.g. a personal computer. An interface kit (cable and software) is delivered with the UPS. The software supports most common operating systems incl. Novell, UNIX, VMS, Windows - 95/98/2000/Xp/vista/7 - NT, IBM OS/2, LINUX, has a modular and layered architecture and works for all degrees of network complexity: stand-alone, multi-vendor networks and large managed networks.

During a power failure the UPS software takes a number of actions: processes are stopped, open files are closed and unattended systems will be shut down in a controlled way. When the utility power returns, the systems will automatically start up and will be up and running as soon as possible.

For specific information on GE Digital Energy connectivity products please contact your dealer or internet: www.gepowerquality.com.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Battery low</td>
</tr>
<tr>
<td>2</td>
<td>Serial data out</td>
</tr>
<tr>
<td>3</td>
<td>Serial data in / UPS shutdown</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Common</td>
</tr>
<tr>
<td>6</td>
<td>Bypass active</td>
</tr>
<tr>
<td>7</td>
<td>Plug&Play / RTS</td>
</tr>
<tr>
<td>8</td>
<td>Utility failure</td>
</tr>
<tr>
<td>9</td>
<td>General alarm</td>
</tr>
</tbody>
</table>

Contact interface: Max 48V / 30mA

6.2 - EMERGENCY SHUTDOWN

The emergency shutdown connector is located on the RS232/contact interface card (12 in Fig.19). Be sure that the UPS is switched off, and remove the card from the unit*. Remove the wire from connector J3 (pin 3 and 4). Install the wiring of a normally closed contact to connector J3 (pin 3 and 4). Re-install the RS232 interface card. If during normal operation of the UPS the contact is opened, the UPS will shut down. To restart the unit, restore the connection and turn the UPS off and on again.

* If the card is removed during normal operation the UPS will shut down.

6.3 - RELAY CARD (OPTIONAL)

The relay plug-in card can be installed in the middle option slot (13 in Fig.19). The card is provided with four potential free contacts representing: battery low, bypass active, utility failure and general alarm. For more information please refer to the user manual that comes with the interface card (OPM_CON_ACC_REL_CRD_XGB_V031).

6.4 - SNMP INTERFACE (OPTIONAL)

This SNMP plug-in card can be installed in the middle option slot (13 in Fig.19). The card makes the UPS ‘SNMP manageable’: it allows the data interface to be connected directly to an Ethernet network (thin coax, twisted pair, AUI). For more information please refer to the user manual that comes with the interface card. When this option is installed the RS232 communication link is disabled.
7 - OPTIONAL FEATURES

7.1 - PLUG-IN CARDS

An option slot (13 in Fig.19) allows installation of a relay or SNMP plug-in card. See sections 6.3 and 6.4 for more information.

7.2 - RPA-FACILITY (REDUNDANT PARALLEL ARCHITECTURE)

Many mission-critical applications need a fault tolerant, 100% reliable availability of mains power. By adding the RPA-facility to the UPS (14 in Fig.19), highest standards for reliability can be met. The RPA-facility allows to connect 2, 3 or 4 units in parallel.

Connecting GE Digital Energy UPS units in parallel is attractive for several reasons.

Redundancy:
To achieve the highest possible level of power protection in a fault-tolerant network. By connecting units in parallel, using the N+x system, a redundant system can be created. In this case all the UPSs equally share the load in the system during normal operation. In this way every possible single point of failure will be eliminated. This means that if one of the UPSs in the parallel system fails, the other(s) can still supply the load guaranteeing full protection without any interruption.

Scalability:
To add power if needed without investments beforehand. Another reason for paralleling units is upgrading the power rating of the system. If e.g. a LP 6-11U924 is installed, the power rating can be upgraded to 12kVA by adding another LP 6-11U924 in parallel. This spread investment makes sure that you don’t have to invest in advance, but only when you need to.

GE’s RPA system has the following major advantages:

- RPA offers true redundancy because not only the power electronics are redundant, but also the batteries, the bypass circuit and the control logic.
- The RPA system is an option.

7.3 - SEISMIC ANCHORS

Seismic anchors can be ordered separately; contact your local GE authorized representative.
8 - MAINTENANCE

NOTE
Refer maintenance and service work, including battery replacement, to GE Authorized Service station.
Refer to section 1.3 for further details.

8.1 - SAFETY

DANGER
When the UPS operates, all parts of the electronics are directly connected to the utility and high voltages are present on all internal parts, including the battery. Even after disconnection from the utility, all parts inside the UPS, including the battery, conduct dangerous voltages (except the RS232 output). For your safety, only authorized service personnel may remove the cabinet cover.
Refer to section 1.3 for further details.

8.2 - GENERAL

When used properly, the UPS is virtually maintenance free other than keeping the air inlets/outlets free from dust.

8.3 - COOLING FAN

The expected operational life of the cooling fans is approximately 20,000 to 40,000 hours of continuous operation. A high ambient temperature will shorten this operational life.

8.4 - BATTERIES

The service life of the battery is from 3 to 6 years, depending on the operating temperature and on the number of discharge cycles.
As a healthy battery is essential to the performance of the UPS, an automatic battery test is performed regularly to ensure failsafe operation (see section 5.5.1). When the condition of the battery is critical, the warning signal will be activated (buzzer 1x per 8 seconds, and alarm message 'Replace battery', see 5.4.2). The batteries must be replaced as soon as possible. Please contact your dealer. Use only UL recognized batteries (BAZR2), valve regulated types and the part number recommended by the GE Authorized representative.

NOTE: under certain circumstances a manual battery test can result in a false alarm: please see section 5.5.2 'QUICK BATTERY TEST'.

Regular deep battery tests are advised in order to re-calibrate the capacity of aging batteries. See section 5.5.3 for more information.

For authorized service personnel only:

- Never short the battery terminals. Shorting may cause the battery to burn.
- Avoid charging in a sealed container.
- Proper disposal of batteries is required: refer to your local codes for disposal requirements.
- Never dispose of batteries in a fire: they may explode.
- Never disassemble or reassemble batteries; their contents (electrolyte) may be extremely toxic. If exposed to electrolyte, wash immediately with plenty of water, if eye contact occurs flush with water and contact a physician.
8.5 - STORAGE

CAUTION
In case of storage, pay attention to:

Always store the UPS in a dry location with the batteries in a fully charged state, storage temperature must be within -20 and +45°C (-4°F and 113°F). Storing the unit for a period exceeding 3 months can reduce the life of the batteries. To maintain their normal life expectancy, the batteries must be recharged periodically:

- if the storage temperature is within -20 and +30°C (-4°F and 86°F): every 6 months, for 24 hours,
- if the storage temperature is within -20 and +45°C (-4°F and 113°F): every 4 months, for 24 hours.

8.6 - RECYCLING THE UPS AT THE END OF SERVICE LIFE

NOTE
This product has been designed to respect the environment, using materials and components respecting eco-design rules. It does not contain CFCs (Carbon Fluorine Chloride) or HCFCs (Halogen Carbon Fluorine Chloride).

The batteries contain lead, which is a harmful substance for the environment. Proper disposal or recycling of the batteries is required. Refer to your local codes for disposal requirements.

GE Digital Energy, in compliance with environment protection recommends that the UPS equipment, at the end of its service life, must be recycled conforming to the local applicable regulations.
9 - TROUBLESHOOTING

If a malfunction occurs, first check external factors (e.g. connections, temperature, humidity or load) to determine whether the problem is caused by the unit itself or by its environment. Subsequently check whether the breakers/switches on the rear panel (fig. 19, 7-8-9) are in ‘on’ position. Always check these external factors before concluding that your UPS is faulty.

The front screen will indicate the problem and solution (if the problem is due to environmental circumstances). If the solution is not shown on the screen, please contact your dealer.

During the self-test, performed immediately after start-up, the UPS may detect a system failure. In this case a message is displayed for 30 seconds before the self-test is repeated. If the faulty situation persists, please contact your dealer.

(One of) the following messages can be displayed:

- **SELFTEST FAILURE PCB POWER SUPPLY**: One or more voltages of the internal power supply is (are) outside tolerance. Please contact your dealer.

- **SELFTEST FAILURE AC ON INPUT**: An external AC voltage (not the UPSs output voltage) was detected on the output terminals. Please contact your dealer.

- **SELFTEST FAILURE INT. BATTERY FUSE**: The internal battery fuse is defective. Please contact your dealer.

- **SELFTEST FAILURE EXT. BATTERY FUSE**: The external battery cabinet circuit breaker is in ‘the off’ position. Please switch it to ‘the on’ position.

- **SELFTEST FAILURE BATTERY CHARGER**: Malfunction of the battery charger. Please contact your dealer.

- **SELFTEST FAILURE Uic TOO HIGH**: Malfunction of the input circuit: voltage delivered is too high. Please contact your dealer.

- **SELFTEST FAILURE TEMP TOO HIGH**: The temperature of (one of) the components is (still) too high. See section 5.4.2.

- **SELFTEST FAILURE Uba TOO LOW**: The battery voltage is too low to allow start-up. Wait for a few hours, leave the UPS switched on.*

- **SELFTEST FAILURE Uic TOO LOW**: Malfunction of input circuit: voltage delivered is too low. The batteries may be faulty or depleted. Wait for a few hours, leave the UPS switched on.*

- **SELFTEST FAILURE Q4 NOT OK**: Hardware output voltage detection ‘Q4’ is active. Please contact your dealer.

* If absence of input power (utility failure, maintenance work) is expected to last longer than a few hours, switch off the UPS to save battery power.

CAUTION

If the UPS input power is absent for several days and the UPS remains on under no-load conditions, the batteries can be discharged very deeply, resulting in a shortened battery life time.
10 - SPECIFICATIONS

UPS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>6kVA</th>
<th>10kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power (kVA/kW)</td>
<td>6/4.8</td>
<td>10/8</td>
</tr>
<tr>
<td>AC input voltage</td>
<td>120/208/240/277 VAC</td>
<td></td>
</tr>
<tr>
<td>Input frequency</td>
<td>60/50 Hz</td>
<td></td>
</tr>
<tr>
<td>AC output voltage</td>
<td>120/208/220/230/240/277 VAC</td>
<td></td>
</tr>
<tr>
<td>Output frequency</td>
<td>60/50 Hz</td>
<td></td>
</tr>
<tr>
<td>UPS efficiency (full load)</td>
<td>88.7%</td>
<td>88.7%</td>
</tr>
<tr>
<td>UPS efficiency on ECO mode (full load)</td>
<td>93%</td>
<td>94.2%</td>
</tr>
<tr>
<td>Line input breaker (C-type)</td>
<td>32A</td>
<td>63A</td>
</tr>
<tr>
<td>Bypass input breaker (C-type)</td>
<td>32A</td>
<td>63A</td>
</tr>
<tr>
<td>Battery safety fuse (F4A)</td>
<td>30A</td>
<td>30A</td>
</tr>
<tr>
<td>Battery safety fuse (F4B)</td>
<td>30A (spare)</td>
<td>30A</td>
</tr>
<tr>
<td>Internal safety fuse (FSA)</td>
<td>-</td>
<td>30A</td>
</tr>
<tr>
<td>Internal safety fuse (FSB)</td>
<td>30A</td>
<td>30A</td>
</tr>
<tr>
<td>Input/output connectors</td>
<td>terminals at rear of unit</td>
<td></td>
</tr>
</tbody>
</table>

INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>100% load</th>
<th>50% load</th>
<th>20% load</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input voltage range (208V-240V) at 100% load</td>
<td>162 - 285 V</td>
<td>146 - 285 V</td>
<td>133 - 285 V</td>
</tr>
<tr>
<td>AC input voltage range (208V-240V) at 50% load</td>
<td>81 - 141 V</td>
<td>72 - 141 V</td>
<td>66 - 141 V</td>
</tr>
<tr>
<td>AC input voltage range (208V-240V) at 20% load</td>
<td>187 - 325 V</td>
<td>166 - 325 V</td>
<td>153 - 325 V</td>
</tr>
<tr>
<td>AC input voltage range (120V)</td>
<td>57A</td>
<td>33A</td>
<td>30A</td>
</tr>
<tr>
<td>AC input voltage range (220V)</td>
<td>32A</td>
<td>23A</td>
<td></td>
</tr>
<tr>
<td>AC input voltage range (240V)</td>
<td>23A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC input voltage range (277V)</td>
<td>23A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input frequency range</td>
<td>40-70 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current wave form</td>
<td>sinusoidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input power factor</td>
<td>≥ 0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BATTERY CHARGER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>350 - 450 V</th>
<th>float: 273 V, boost: 295 V</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC input voltage range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC output voltage at 20 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current limit (Adc)</td>
<td>4.2</td>
<td></td>
<td>4.2</td>
</tr>
</tbody>
</table>

OUTPUT CONVERTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>6000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power at pf. = 0.8, VA*</td>
<td>6000</td>
<td>10000</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>IGBT</td>
<td></td>
</tr>
<tr>
<td>AC output voltage</td>
<td>120/208/220/230/240V/277 ± 1% static resistive load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120/208/220/230/240V/277 ± 2% measured crest load 2.5:1</td>
<td></td>
</tr>
<tr>
<td>Typical overload (temp. dependent)</td>
<td>110% ≥ 20 minutes</td>
<td></td>
</tr>
<tr>
<td>Output frequency</td>
<td>60 or 50 Hz selectable, ± 0.1%, unless synchronized with the utility</td>
<td></td>
</tr>
<tr>
<td>Freq. tracking range</td>
<td>± 2/4/6% of nominal, user selectable</td>
<td></td>
</tr>
<tr>
<td>Output wave form</td>
<td>sine wave</td>
<td></td>
</tr>
<tr>
<td>Max. phase difference input-output</td>
<td>max 7°</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td>2% max. with linear load</td>
<td></td>
</tr>
<tr>
<td>Power factor range</td>
<td>Any lagging or leading power factor permitted within the specified rating to pf. 0.5</td>
<td></td>
</tr>
<tr>
<td>Output derating altitude</td>
<td>Till 1000m no derating</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>Automatic shutdown or transfer to bypass, if bypass is available in case of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- low/high DC voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- overtemperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- overload / short circuit</td>
<td></td>
</tr>
</tbody>
</table>

The output is protected against connection to the utility supply

* according to EN 50091-1
AUTOMATIC BYPASS SWITCH

The automatic switch provides transfer of the load to the utility voltage without any interruption of the supply. The transfer is initiated by a signal from the output converter protection circuit in case of an overload or high temperature. When the conditions return to normal the load is automatically transferred back to the output converter. The automatic bypass switch can be disabled by the end-user.

- **Bypass voltage limits**: ±15%, +10% of nominal
- **Transfer transients**: typically 2% mean deviation over one half cycle.
- **Frequency tracking range**: ±2/4/6% of nominal (user selectable)
- **Slew rate**: max. 1Hz/sec or 5Hz/sec (user selectable)

BATTERY

- **Battery type**: Sealed and maintenance free
- **Nominal voltage (V) / capacity (Ah)**: 12/76 12/91
- **Number of batteries**: 20 20
- **Battery port number**: BATLP116-924 BATLP1110-924
- **Battery recharge time**: 24 hours for 80% capacity
- **Battery service life**: up to 6 years (depending on operating conditions)
- **Battery discharging**: self discharge current ≤ 100 mA
- **End of discharge voltage**: Load dependent 10.5Vdc < 0.2 CA till 9.0 Vdc > 2 CA

<table>
<thead>
<tr>
<th>Load on UPS (VA/Watts)</th>
<th>UPS: 6kVA</th>
<th>10kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 / 800</td>
<td>700</td>
<td>850</td>
</tr>
<tr>
<td>2000 / 1600</td>
<td>450</td>
<td>530</td>
</tr>
<tr>
<td>3000 / 2400</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>5000 / 4000</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>6000 / 4800</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>8000 / 6400</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>10000 / 8000</td>
<td>-</td>
<td>93</td>
</tr>
</tbody>
</table>

BATTERY cabinet

- **Dimensions (HxWxD, mm)**: 1092x1016x826
- **Dimensions (HxWxD, inch)**: 43x40x32.5
- **Weight without battery (Kg)**: 148 148
- **Weight without battery (Lbs)**: 326 326
- **Weight with battery (Kg)**: 699 802
- **Weight with battery (Lbs)**: 1538 1764

ENCLOSURE

- **Sheet steel cubicule 208/240V I/P**: VSD2
- **Sheet steel cubicule 120/277V I/P**: VSDT2 + VSD2
- **Color front**: RAL 9006 (aluminum)
- **Color cabinet**: RAL 9010 (white)
- **Protection**: IP 20
- **Dimensions (HxWxD)**: Refer table 5
- **Weight (without batteries, Kg)**: Refer table 5

GENERAL DESIGN CRITERIA

- **Mechanical**: IP20
- **Humidity**: 95% no condensing
- **Safety**: UL 924, IEC 60950
- **Surge capability**: 6kV 1.2/50µs; 3kA 8/20µs; IEEE C62.41 (6kV, 100kHz)
- **EMC**: FCC part 15, class A

ENVIRONMENT

- **Ambient temperature**: 0 to +40°C (32 to 104°F). For optimal backup time 20 to 30°C (68°F to 86°F) is recommended for battery
- **Audible noise at 1 meter**: 40 - 50dB(A); the audible noise is load and temperature dependent
- **Cooling air**: 330m³/h or 194CFM
Dimensions Conduit Box

Frontal connection

Connection from below

Center of Gravity

UPS cabinet, dimensions

HxWxD:
680 x 310 x 710 mm
26.8 x 12.3 x 28.7 inch

Center of gravity, position:
Refer table 5
LP11 924 6&10 kVA Weights and Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Heat dissipation</th>
<th>Cabinet Dimensions</th>
<th>Center of gravity</th>
<th>Weight</th>
<th>Altitude (max 4000m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100% load</td>
<td>50% load</td>
<td>H</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>750</td>
<td>2559</td>
<td>330</td>
<td>1126</td>
<td>26.8 (681)</td>
</tr>
<tr>
<td>LP 6-11U924/120</td>
<td>760</td>
<td>2593</td>
<td>410</td>
<td>1399</td>
<td>39.2 (996)</td>
</tr>
<tr>
<td>LP 6-11U924/277</td>
<td>700</td>
<td>2388</td>
<td>321</td>
<td>1096</td>
<td>39.2 (996)</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>1190</td>
<td>4060</td>
<td>550</td>
<td>1876</td>
<td>26.8 (681)</td>
</tr>
<tr>
<td>LP 10-11U924/120</td>
<td>1320</td>
<td>4503</td>
<td>620</td>
<td>2115</td>
<td>39.2 (996)</td>
</tr>
<tr>
<td>LP 10-11U924/277</td>
<td>1120</td>
<td>3821</td>
<td>535</td>
<td>1826</td>
<td>39.2 (996)</td>
</tr>
</tbody>
</table>

Table 5. Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Input wiring</th>
<th>Output wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Utility volt. 120V</td>
<td>Utility volt. 208V</td>
</tr>
<tr>
<td></td>
<td>AWG/mm²</td>
<td>AWG/mm²</td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>N.A.</td>
<td>8/10</td>
</tr>
<tr>
<td>LP 6-11U924/120</td>
<td>4/22</td>
<td>N.A.</td>
</tr>
<tr>
<td>LP 6-11U924/277</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>3/27</td>
<td>N.A.</td>
</tr>
<tr>
<td>LP 10-11U924/120</td>
<td>4/22</td>
<td>N.A.</td>
</tr>
<tr>
<td>LP 10-11U924/277</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Table 6. Wiring details

<table>
<thead>
<tr>
<th>Model</th>
<th>Minimum free space required (Inches (mm))</th>
<th>Distance between mounting holes (Inches (mm))</th>
<th>Input overcurrent protection (AMPS)</th>
<th>Output overcurrent protection (AMPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
<td>Side</td>
<td>Rear</td>
<td>x</td>
</tr>
<tr>
<td>LP 6-11U924</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
<tr>
<td>LP 6-11U924/120</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
<tr>
<td>LP 6-11U924/277</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
<tr>
<td>LP 10-11U924</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
<tr>
<td>LP 10-11U924/120</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
<tr>
<td>LP 10-11U924/277</td>
<td>4 (102)</td>
<td>2 (51)</td>
<td>8 (203)</td>
<td>7.24 (184)</td>
</tr>
</tbody>
</table>

Table 7. Clearance and current limits
LP11 924 6&10 kVA: 208-240V input

(note: Picture shown without access cover at the rear)

Front view

Side view

Rear view

Bottom view

4xM8 mounting holes

CASTORS

BATTERY FUSES

CONTROLs / CIRCUIT BREAKERS

BATTERY PACK CONNECTOR

OPTION SLOTS:

CONDUIT BOX

CABLE ENTRY

SUB-D PINNING

LEVELLER

4xM8 mounting holes

POSITION A: FIX UPS TO THE FLOOR
POSITION B: LIFT UPS CASTORS FROM THE FLOOR

EARTH CONNECTION IS ESSENTIAL

NORMAL: POSITION 1
LOAD ON UPS

SERVICE: POSITION 2
LOAD ON BYPASS

MANUAL BYPASS SWITCH

INPUT/OUTPUT TERMINALS

52

User manual LP11 924 & 10 kVA UPS 1.0
LP11 924 6&10 kVA: 120/277V input
(note: Picture shown without access cover at the rear)

Front view

Side view

Bottom view

Rear view

4xM8 mounting holes

INPUT TERMINALS

OUTPUT TERMINALS

EARTH CONNECTION IS ESSENTIAL

CASTORS

BATTERY PACK CONNECTOR

CONTROLS / CIRCUIT BREAKERS

BATTERY FUSES

OPTION SLOTS

RS232 / CONTACT INTERFACE

SUB-D PINNING

CONDUIT BOX

CABLE ENTRY

4xM8 mounting holes

EARTH CONNECTION IS ESSENTIAL

MODIFICATIONS RESERVED